Discretization in Semi-Infinite Programming: The rate of approximation
نویسنده
چکیده
The discretization approach for solving semi-infinite optimization problems is considered. We are interested in the rate of the approximation error between the solution of the semi-infinite problem and the solution of the discretized program depending on the discretization mesh-size d. It will be shown how this rate depends on whether the minimizer is strict of order one or two and on whether the discretization includes boundary points of the index set in a consistent way. This is done for common and for generalized semi-infinite problems.
منابع مشابه
Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملNon-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملAn interior point algorithm for semi-infinite linear programming
We consider the generalization of a variant of Karmarkar's algorithm to semi-infinite programming. The extension of interior point methods to infinite-dimensional linear programming is discussed and an algorithm is derived. An implementation of the algorithm for a class of semi-infinite linear programs is described and the results of a number of test problems are given. We pay particular attent...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملAn exact penalty function for semi-infinite programming
This paper introduces a global approach to the semi-infinite programming problem that is based upon a generalisation of the g~ exact penalty function. The advantages are that the ensuing penalty function is exact and the penalties include all violations. The merit function requires integrals for the penalties, which provides a consistent model for the algorithm. The discretization is a result o...
متن کامل